from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Adamax"]) class Adamax(optimizer.Optimizer): """Optimizer that implements the Adamax algorithm. Adamax, a variant of Adam based on the infinity norm, is a first-order gradient-based optimization method. Due to its capability of adjusting the learning rate based on data characteristics, it is suited to learn time-variant process, e.g., speech data with dynamically changed noise conditions. Default parameters follow those provided in the paper (see references below). Initialization: ```python m = 0 # Initialize initial 1st moment vector u = 0 # Initialize the exponentially weighted infinity norm t = 0 # Initialize timestep ``` The update rule for parameter `w` with gradient `g` is described at the end of section 7.1 of the paper (see the reference section): ```python t += 1 m = beta1 * m + (1 - beta) * g u = max(beta2 * u, abs(g)) current_lr = learning_rate / (1 - beta1 ** t) w = w - current_lr * m / (u + epsilon) ``` Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta_2: A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. epsilon: A small constant for numerical stability. {{base_optimizer_keyword_args}} Reference: - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="adamax", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon def build(self, var_list): """Initialize optimizer variables. Adamax optimizer has 2 types of variables: momentums (denoted as m), exponentially weighted infinity norm (denoted as u). Args: var_list: list of model variables to build Adamax variables on. """ if self.built: return super().build(var_list) self._m, self._u = self.add_optimizer_variables( var_list, ["momentum", "norm"] ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) local_step = ops.cast(self.iterations + 1, variable.dtype) beta_1_power = ops.power( ops.cast(self.beta_1, variable.dtype), local_step ) m = self._m[self._get_variable_index(variable)] u = self._u[self._get_variable_index(variable)] self.assign_add( m, ops.multiply(ops.subtract(gradient, m), (1 - self.beta_1)) ) self.assign( u, ops.maximum(ops.multiply(self.beta_2, u), ops.abs(gradient)) ) self.assign_sub( variable, ops.divide( ops.multiply(lr, m), ops.multiply((1 - beta_1_power), ops.add(u, self.epsilon)), ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, } ) return config Adamax.__doc__ = Adamax.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )